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Abstract 

Proponents of the extended mind insist that human states and cognitive processes can, at 

times, include non-biological resources that lie external to the bodily boundaries. In the 

present chapter, we apply this idea to large language models (LLMs), suggesting that some 

LLMs exist as extended cognitive (or computational) systems. We focus in particular on 

LLMs that exploit retrieval-augmented generation (RAG) techniques and online 

computational tools, proposing that these systems constitute extended architectures whose 

capabilities are realized, in part, by external structures. Drawing on parallels with classic 

cases of human cognitive extension, we argue that extended LLMs raise important 

philosophical questions concerning the nature and limits of artificial intelligence. We also 

draw attention to the role of language in supporting the emergence of extended systems. 

LLMs, it is suggested, are particularly well placed to benefit from their immersion in an 

online ecology that is home to a sizable chunk of human symbolic and technological 

culture. 

“It's not a weapon. It's a gift. The weapon is their language. They gave it all to us.” 

– Arrival (2016), directed by Denis Villeneuve 

Introduction 

In the 2016 movie Arrival, a team of scientists race to decipher an intricate system 

of circular symbols used by 7-limbed alien visitors, called Heptapods.1 As Dr. Louise 

Banks immerses herself in the alien language something remarkable happens: she begins to 

see glimpses of her future life. The alien language, it is revealed, extends the user’s 

cognition in time allowing present actions to be shaped by future events. At one point in 

the movie, Louise ‘remembers’ that she will eventually publish a book on the Heptapod 

language. This enables her to complete her understanding of the alien script, for she now 

has the same relationship to her future writing as she does her past writing. Evidently, the 

 
1 The movie is an adaptation of a science fiction novella by American writer Ted Chiang (2004). 

Smart, P. R., & Clowes, R. W. (in press) The Gift of Language: Large Language Models and the Extended 

Mind. In V. Santos & P. Castro (Eds.), Advances in Philosophy of Artificial Intelligence. Ethics Press, 

Bradford, UK. 
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alien language is a very powerful tool. It turns out that the alien language is a “gift.” The 

Heptapods, knowing they would have to rely on humans in the future, visited Earth with 

the intention of offering humans a particularly potent form of cognitive technology. 

The movie’s preoccupation with language resonates with a recurring theme in the 

philosophical and cognitive scientific literature. This relates to the cognitive 

transformational effects of language. As with the Heptapod language, a facility with human 

language has been seen to engender a range of cognitive benefits that go beyond its merely 

communicative role. Of particular interest is the idea that language functions as a sort of 

tool or technology that enables biological brains to tackle an otherwise intractable class of 

computational problems (Clark, 1997, 1998). According to this view, language is not just 

one of the hallmark features of human intelligence, it is a central feature of the human 

cognitive architecture: what we call human cognition is simply a form of language-

augmented cognition (see Lupyan, 2016). 

Claims regarding the cognitive transformational role of language are especially 

prominent in discussions of the extended mind, where language is seen not merely as a 

vehicle for expressing thought, but as a means of reshaping the very structure and 

dynamics of human cognition.2 According to proponents of active externalism, the 

machinery of the mind (the mechanisms responsible for human mental states and cognitive 

processes) can sometimes extend beyond the borders of skin and skull to include resources 

in the local environment (Clark, 2008; Clark & Chalmers, 1998). Humans, it is suggested, 

are particularly adept at creating and exploiting these extended mechanisms, enabling them 

to assimilate worldly resources deep into their cognitive routines (Clark, 2003). Language 

then works in the manner of a cognitive amplifier—or “computational transformer” (see 

Clark, 1998)—yielding opportunities for cognitive extension that lie well beyond the reach 

of other terrestrial critters. The process of writing, for example, enables us to represent our 

thoughts in an external medium, and it is via this external medium that we are able to 

inspect our own thoughts via a perceptual route (Clark, 2006). Externalization also yields 

other benefits. We are, for example, able to manipulate the bio-external tokenings of our 

 
2 By way of a terminological note, we regard extended cognition and the extended mind as two strands of 

active externalist theorising, with the former term (extended cognition) referring to cognitive scientific kinds 

(e.g., memory) and the latter (extended mind) referring to folk psychological kinds (e.g., belief). In the 

present chapter, we will use the term “cognitive extension” to refer to both extended cognition and the 

extended mind. 
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own thoughts in a way that may be difficult or impossible to achieve with the bare 

biological brain. In short, we can use our actions to manipulate words, presenting the brain 

with all manner of new configurations and juxtapositions, some of which may limn the 

path towards previously unreachable ideas. Language, on this view, is not merely a tool for 

representing our thoughts, it opens the door to a radically different way of thinking. 

Courtesy of language, we are able to exploit information processing loops that span the 

brain, the body, and the world, transforming the process of thinking from a purely brain-

based (neurally-realized) process into an extended (world-involving) process. If active 

externalists are right, it is this linguistically-amplified capacity for cognitive extension that 

holds the key to human cognitive success. Our human brains are undoubtedly different 

from the brains of other species, but they are not all that different. The cognitive 

differences, by contrast, are vast. There is a gaping chasm between our intelligence and the 

intelligence of other species—a cognitive divide that makes us somewhat unique in the 

natural order. Precisely how (or why) we made this transition remains unclear, but it is 

hard to overlook the cognitively-empowering role of language. 

While our language-laden minds may be unique in the natural order, we are no 

longer the only entities to possess a basic facility with language. Recent research has given 

rise to Large Language Models (LLMs)—a new breed of intelligent machines that exhibit 

a remarkable proficiency with human language. The impact of the new (technological) 

arrivals is perhaps not on the scale of an alien visitation, but it is nevertheless significant. 

Systems like ChatGPT and Gemini have captured the popular imagination, sparking 

widespread debates about the future of Artificial Intelligence (AI) and its impacts on 

society. 

From an active externalist perspective, there are at least two ways that we might 

approach LLMs. The first treats LLMs as the potential targets of cognitive incorporation—

as novel technological resources that could be assimilated into human cognitive routines, 

functioning perhaps as the technological ingredients of a new sort of extended mind. But in 

addition to understanding LLMs as the potential object of extension—as a resource to be 

incorporated into human cognitive routines—we can also understand LLMs as the 

potential subject of extension—as an entity that benefits from the operation of extended 

information processing circuits. This is the approach we pursue in the present chapter. In 

particular, we explore the extent to which LLMs can be understood as extended systems, 
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drawing on research into extended cognition and the extended mind. As we will see, 

language plays a particularly important role in the formation of these extended systems 

(what we dub extended LLMs). In our own species, language opens the door to 

cognitively-empowering forms of engagement with a wider environment, enabling us to 

form extended systems whose cognitive/computational capacities far outstrip those of the 

biological brain. Much the same, we suggest, applies to LLMs. Language is thus revealed 

as a transformative technology, one whose contributions to machine intelligence may be 

just as important as they are to our own species-specific form of cognitive success. 

Retrieval-Augmented Generation 

LLMs are AI systems that specialize in language-related tasks, such as text 

generation, translation, summarization, and question-answering. As with many 

contemporary AI systems, LLMs are driven by deep (multi-layer) neural networks that are 

trained on large datasets. These neural networks come in two basic varieties: transformers 

and recurrent neural networks. While both these architectures have been used to implement 

LLMs, much of the contemporary interest in LLMs stems from research into transformer 

networks. A key innovation relates to the introduction of a self-attention mechanism that 

weights and integrates information from different positions in an input sequence (Vaswani 

et al., 2017). This enables LLMs to determine the influence that earlier words in an input 

sequence have on later words, allowing for the representation of long-range dependencies. 

The overarching objective of the transformer is to perform a simple predictive task. In 

short, transformers generate text by making probabilistic predictions about the next word 

in a sequence, using both the initial input and any previously generated words as context 

for the predictive effort.3 While this predictive task may not sound like a recipe for 

success, especially when one considers the complexity of human natural language, LLMs 

have exhibited impressive performance on a range of language processing tasks. They are 

also capable of engaging in conversational interactions, using earlier exchanges as the 

basis for future responses. 

 
3 Technically, LLMs trade in tokens rather than words. A token is a numerical representation of a particular 

unit of text, such as a word, sub-word, or individual character. Many LLMs use a tokenization scheme called 

Byte Pair Encoding (BPE), which yields tokens that are roughly equivalent to 3/4 of an English word. 
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Much of the success of LLMs stems from the use of powerful machine learning 

techniques that progressively adjust the weights (or parameters) of an artificial neural 

network to encode the statistical regularities of human natural language. Although this 

approach has proved remarkably effective, it does lead to a number of challenges. These 

include a tendency to produce factually incorrect responses (often referred to as 

“hallucinations”), a dependence on outdated or missing information, and the use of non-

transparent, non-traceable reasoning processes that make it difficult to understand or verify 

the origins of specific outputs. In response to these challenges, researchers have explored 

the merits of a technique called Retrieval-Augmented Generation (RAG) (Gao et al., 2024; 

Ram et al., 2023). A central feature of RAG is the inclusion of a retrieval system that 

allows external information to be incorporated into the LLM’s generative routines. There 

are, in fact, many variations of this retrieval-oriented technique, with multiple types of 

RAG-based LLMs (or RAG models) emerging from recent research (see Gao et al., 2024, 

for a recent view). For present purposes, however, we will limit our attention to a basic 

RAG model consisting of a single retrieval loop. This is what is sometimes called a single-

cycle (or single-time) RAG model. 

 

Figure 1. Example of a single-cycle RAG model (adapted from Gao et al., 2024). A user 

query functions as a retrieval cue, prompting the recall of query-relevant information (text 

chunks) from an external datastore. The retrieved information is then used to contextualize 

the LLM’s response. 
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Figure 1 shows the basic structure of a RAG model. For the purposes of illustration, 

we will assume that the LLM in Figure 1 is a standard transformer network that has been 

trained on large amounts of textual data. This is what is typically referred to as the training 

data or training corpus. Courtesy of the training regime, the information contained in the 

training data will become incorporated into the LLM’s internal architecture. Specifically, 

the information will be encoded in the parameters (or weights) of the transformer network, 

yielding what is commonly known as parametric knowledge. This body of parametric 

knowledge defines the internal memory of the LLM. When the LLM is presented with a 

particular task, it relies on its internal memory to deliver (or generate) the correct response. 

If, for example, the LLM in Figure 1 had been trained on information about The Museum 

of Modern Art (MoMA) (in New York), it would be able to answer questions about 

MoMA using its internal memory. In response to a question about the location of MoMA, 

the LLM might respond by saying that the museum was on 53rd Street. This is what we 

would observe if the LLM had been exposed to information about MoMA as part of its 

training regime. Suppose, however, that the LLM in Figure 1 has not been trained on any 

information pertaining to MoMA—such information, let’s suppose, was omitted from the 

training data. In this case, the LLM would have no opportunity to assimilate MoMA-

related information internal memory. Accordingly, when the LLM is prompted with a 

question about the location of MoMA, it responds by saying that it is unable to answer the 

user’s query. This is the state-of-affairs depicted in the upper output in Figure 1 (i.e., the 

response labelled “Without RAG”). 

How might we remedy this sort of epistemic deficit? One possibility would be to 

retrain the LLM on the missing information, adding the MoMA-related information to a 

training dataset and then embarking on an additional round of machine learning. RAG, 

however, relies on a different approach. Rather than resort to retraining, RAG uses a 

retrieval loop to access information that would otherwise be added to the training data. 

Here, the user’s query (e.g., “What is the address of MoMA?”) serves as a retrieval cue, 

which is used to access information from an externally-situated datastore (typically, a 

vector database). This external datastore is what is referred to as the LLM’s external 

memory. Unlike the contents of internal memory, which are encoded in the LLM’s 

parameters, the contents of external memory are represented by segments of text, known as 

text chunks. Given their non-parametric nature, it is common for these chunks to be 
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referred to as non-parametric knowledge. The retrieval process works by scoring text 

chunks in terms of their (semantic) similarity to retrieval cues, with the highest scoring 

chunks being returned to the LLM. The retrieved information is then used to contextualize 

the LLM’s response, with each response being conditioned on a combination of both the 

user’s query and the retrieved information. In Figure 1, for example, the retrieval loop 

returns two text chunks that are deemed relevant to the user’s query. These text chunks are 

added to the LLM’s context window, where they work to influence the LLM’s response. 

Relative to Figure 1, it should be clear how RAG addresses the aforementioned 

problems of hallucinatory responses, outdated or absent knowledge, and non-traceable 

reasoning processes. In respect of hallucinatory responses, the addition of retrieved 

information minimizes the model’s tendency to hallucinate by conditioning responses on 

factually correct information. In Figure 1, for example, the answer to the user’s query is 

explicitly represented in the retrieved information. This dramatically increases the chances 

of the model producing the correct response. 

The presence of external memory also resolves the problem of outdated or absent 

knowledge. As we have seen, external memory can store information that was not 

available during the LLM’s original training data. In addition, it is far easier to change the 

contents of external memory than it is the contents of internal memory. The contents of 

external memory, recall, are represented using the familiar (symbolic) resources of human 

natural language, and this makes it relatively easy for a language-enabled entity such as 

ourselves (or perhaps an LLM) to edit the contents of external memory. 

Finally, RAG yields a degree of transparency (or at least greater traceability) when 

it comes to understanding model outputs. In Figure 1, for example, it is easy to see what 

information is informing the model’s response, and (assuming that the contents of external 

memory are associated with provenance information) these responses can be traced to 

particular sources.  

Now that we have a better understanding of RAG, let us turn our attention to the 

links with active externalism. One such link is suggested by the example in Figure 1, for 

the location of MoMA features as part of a classic thought experiment that was introduced 

by Clark and Chalmers (1998) to motivate claims for the extended mind. Clark and 

Chalmers (1998) ask us to imagine two individuals, both of whom are located in New York 
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city. One individual—Inga—is a neurologically intact individual. When Inga wants to visit 

MoMA, she retrieves the location of MoMA from bio-memory and heads off in the 

direction of 53rd Street. The second individual—Otto—has a mild form of dementia. 

Unlike Inga, Otto cannot rely on bio-memory to inform his museum-going behaviours. 

Instead, when Otto wants to go to MoMA, he retrieves information from an externally-

situated resource, namely a conventional notebook. 

Despite the differences between Otto and Inga, Clark and Chalmers (1998) suggest 

that the familiar folk psychological strategy of explaining behaviour courtesy of the 

ascription of mental states (e.g., states of dispositional belief) is one that can be applied to 

both individuals. Thus, just as Inga can be said to believe that MoMA is on 53rd Street 

(even before the information was retrieved from bio-memory), so Otto can be said to 

believe that MoMA is on 53rd Street (even before he consulted the notebook). In one 

sense, then, Otto and Inga are highly similar: both individuals can be said to possess the 

dispositional belief that MoMA is located on 53rd Street. At the same time, however, it 

should be clear that these beliefs cannot be rooted in the same physical processes. While 

Inga’s belief is a standard non-extended belief, Otto’s belief is an extended belief. Otto’s 

belief is extended in the sense that the supervenience base for the belief (the things that 

make it true that Otto possesses the belief) must rely on forces and factors that lie external 

to the biological individual we recognize as Otto. Consider, for instance, that if Otto were 

to lose his notebook, then he would no longer be able to determine the location of MoMA. 

Accordingly, it would make no sense to credit Otto with the belief that MoMA is on 53rd 

Street, for if Otto were to believe that MoMA is on 53rd Street, then this is where he 

should go given his desire to visit MoMA. 

Note how the contrast between Otto and Inga resembles that between RAG models 

and standard LLMs. Inga resembles a standard LLM that does not rely on RAG. When this 

LLM is prompted to recall the location of MoMA, it relies on its internal memory to 

produce the correct response. The LLM’s internal memory thus maps to Inga’s bio-

memory. This mapping is all the more compelling given the way information is encoded in 

internal memory: just as the LLM’s internal memory is encoded in the parameters of its 

artificial neural network, so Inga’s bio-memories are encoded in the parameters of her bio-

neural network. 
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Now consider Otto. Otto resembles an LLM that relies on RAG (i.e., a RAG 

model). Here, the notebook corresponds to the LLM’s external memory. When Otto wishes 

to go to MoMA, he consults the notebook, retrieves the relevant information, and heads off 

in the direction of 53rd Street. Similarly, when a RAG model is prompted to recall the 

location of MoMA, it triggers a retrieval loop that returns information from a datastore that 

lies external to the LLM. The retrieved information is then factored into the LLM’s 

response. Otto’s use of the notebook thus parallels the LLM’s use of an external (extra-

systemic) datastore. In both cases, we encounter the presence of a retrieval loop that 

accesses information contained in some external resource (a notebook or vector database). 

This information is then factored into some sort of overt response, such as heading off to 

53rd Street (in the case of Otto) or generating a response to a user query (in the case of the 

LLM). 

There is a further parallel between the two forms of external memory. Both the 

notebook and the vector database consist of textual information. Accordingly, there is no 

reason to assume that the two forms of external memory are trading in radically different 

forms of encoding. The inscriptions in Otto’s notebook are a form of textual encoding, in 

the sense that they represent the location of MoMA using the familiar resources of natural 

language. But the same is also true of the information stored in a vector database. As a 

means of highlighting the parallels between the two forms of external memory, let’s make 

a couple of adjustments to the original Otto case. Firstly, let’s substitute the notebook for a 

smartphone connected to an online vector database. Now, when Otto wants to go to 

MoMA, he uses his smartphone to retrieve the relevant information from the very same 

database as that used by a RAG model. There is no reason to think that this sort of 

technological upgrade materially alters the philosophical import of the original Otto case. 

Insofar as Otto believes (in a dispositional sense) that MoMA is on 53rd Street when 

coupled to the notebook, he will continue to harbour this belief when coupled to the vector 

database. The second adjustment relates to Otto’s behaviour. Instead of Otto actually going 

to MoMA, let’s assume that Otto is asked about the location of MoMA. In response to the 

question “Where can I find the Museum of Modern Art?” Otto responds that MoMA can 

be found on 53rd Street (using his smartphone to retrieve the relevant information). This 

situation, it should be clear, resembles that depicted in Figure 1. Indeed, there is no reason 

to think that Otto’s response is informed by a radically different sort of retrieval process to 
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that used by a RAG model. In fact, Otto and the RAG model could be relying on 

computationally identical retrieval processes to return query-relevant information from the 

very same vector database. Assuming the responses of Otto and the RAG model are the 

same in this scenario—they both report that MoMA is on 53rd street— is there any reason 

to regard the two cases as radically different: to view extension-related claims as plausible 

in the case of Otto, but utterly implausible in the case of the RAG model? 

To our mind, the answer to this question is “no.” Given the parallels with the 

Otto/Inga case, we suggest that RAG models ought to be understood along active 

externalist lines. That is to say, we suggest that RAG models ought to be understood as 

extended LLMs. Just to be clear, this does not mean that we are obliged to regard RAG 

models as extended (artificial) minds. While the appeal to mentalistic notions (e.g., states 

of dispositional belief) is largely uncontroversial in the Otto/Inga case, this is much less so 

when it comes to LLMs. It is, in particular, controversial to suggest that LLMs ought to be 

understood as the bearers of genuine mental states (e.g., Shanahan, 2024), and this is so 

regardless of the (even more controversial) claim that some of those states ought to be 

understood as extended. 

For present purposes, we will seek to bypass these concerns by adopting an 

approach that distinguishes extension-related claims from those pertaining to issues of 

cognitive/mental status. In short, we suggest that the extended status of LLMs can be 

understood without regard to philosophical disputes pertaining to the “mark of the 

cognitive” (or the mark of the mental) (see Adams & Garrison, 2013). The basis for this 

claim relates to the non-cognitive nature of some of the phenomena that have been 

discussed in the active externalist literature. One example relates to the swimming 

performances of bluefin tuna. These performances benefit from the exploitation of 

hydrodynamic phenomena (e.g., self-created vortices and pressure gradients) that work as 

the literal constituents of extended propulsive mechanisms (see Gillett et al., 2022). While 

there is undoubtedly a degree of intelligence in play here, it would be difficult to lump 

propulsive (or locomotor) processes in the same category as cognitive (or mental) 

processes. In general, swimming processes are best understood as the expression of a 

physical ability (or physical capacity). Cognitive processes, by contrast, are best 

understood as the expression of a cognitive ability (or cognitive capacity). The question is 

whether this difference—the distinction between physical and cognitive processes—has 
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any real bearing on our understanding of what it is that underwrites the extended status of 

the tuna’s natatorial performances? Suppose that we abstract away from the details of the 

various cases in the active externalist literature, directing our attention to the more general 

realm of mechanisms, processes, and dispositions. Then, at this more general level, we ask 

ourselves what it is that unites seemingly disparate cases of extension, including those of 

the cognitive and non-cognitive variety. The answer to this question, we suggest, turns on 

the way in which a particular agent is credited with the possession of dispositional 

properties that are subject to extended or wide realization, meaning that the mechanisms 

responsible for the manifestation of the disposition include resources that lie beyond the 

physical borders of the agent to which dispositional properties are ascribed (for more on 

this, see Smart, 2024). The swimming performances of the tuna are thus deemed to be 

extended because the tuna is credited with the possession of a dispositional property (e.g., 

an ability to swim at a certain speed), but the manifestation (or exercise) of this 

dispositional property depends on forces and factors that lie external to the tuna. Likewise, 

what motivates the appeal to extension in the Otto case is the fact that we ascribe a 

dispositional property to Otto (i.e., the dispositional belief that MoMA is on 53rd Street), 

but the manifestation (or exercise) of this dispositional property depends on forces and 

factors that lie external to the biological individual we recognize as Otto. In both these 

cases, the appeal to extension is tied to the way the manifestation of some dispositional 

property depends on forces and factors that lie external to the disposition bearer. 

Dispositions are extended, we suggest, when the mechanisms responsible for the 

realization of processes reflecting the manifestation of a disposition include components 

that lie external to the disposition bearer (i.e., the entity to which the dispositions are 

ascribed). 

This more general approach to understanding extension-related claims is readily 

applicable to LLMs. Indeed, all that is required for an LLM to qualify as extended is that 

we credit an LLM with a dispositional property that—on closer inspection—is revealed to 

rely on forces and factors that lie external to the LLM. The particular nature of this 

dispositional property (e.g., its status as a mental or cognitive kind) is undoubtedly 

important when it comes to understanding the LLM’s status as an extended mind; but we 

can nevertheless understand the extended status of LLMs without agreement on this issue. 

Consider, for example, that whatever else we might say about LLMs, they are clearly 
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systems that are the bearers of certain dispositions (e.g., a capacity to generate responses to 

certain types of queries).4 All that is required for an LLM to count as extended, according 

to the foregoing account, is that one or more of these dispositional properties qualifies as 

an extended dispositional property, meaning that the property must supervene on forces 

and factors that lie external to the LLM. 

For the most part, the claim that RAG models can satisfy this sort of criterion ought 

to be unproblematic. An LLM that correctly reports the location of MoMA clearly has a 

capacity of one sort of another. In the standard (non-extended) case, the LLM’s response is 

informed by the information stored in internal memory, and the capacity is thus one that 

supervenes on forces and factors that lie internal to the LLM. In the case of RAG models, 

however, the correct response occurs as the result of a retrieval loop that returns 

information from an external store. Accordingly, the capacity cannot be one that 

supervenes solely on forces and factors that lie internal to the LLM; instead, we must 

acknowledge the contribution of the wider informational and computational environment 

in which the LLM is situated. To see this, we need only consider what would happen if the 

LLM were to be prevented from accessing its external memory. In this case, the LLM 

would be incapable of responding to the user’s query. It would either fail to produce the 

correct response or report that it was incapable of answering the user’s query. There would, 

as such, be nothing to substantiate the claim that the LLM ‘believed’ X, ‘knew’ Y, or 

possessed the capacity Z. Note that this sudden shift in competence cannot be anything to 

do with the LLM, for the removal of external memory does not entail that the LLM has, 

itself, changed. It is thus the operation of the retrieval loop, coupled with the reliable 

presence of the external memory store, that sustains the presence of the relevant 

dispositional property. And it is courtesy of such dispositional characterizations that we are 

able to latch onto coarse-grained patterns of behaviour that paper over the distinction 

between internal and external memory. An LLM that relies on external memory may be 

just as capable of answering questions about MoMA as one that relies on internal memory. 

Indeed, barring some indication that an LLM is relying on an external resource, a human 

user may be unaware of the presence of the retrieval loop or the distinction between 

internal and external memory. As with the Otto/Inga case, what matters here is not so 

 
4 Given the status of LLMs as AI systems, these dispositional properties will qualify as what are dubbed 

artificial dispositions. For more on artificial dispositions, see Bauer and Marmodoro (2024). 
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much the details of the retrieval process, but more the way in which different bodies of 

information are poised to influence overt behaviour. In this sense, there may be little to 

distinguish between extended and non-extended LLMs. An extended LLM may succeed in 

producing the correct response just as surely as Otto navigates his way to MoMA. 

Extended Memory: The Next Generation 

Recent years have seen an explosion of interest in RAG techniques. This has led to 

the emergence of multiple types of RAG model (Gao et al., 2024). In addition to the 

single-cycle model discussed in the previous section, researchers have increasingly turned 

their attention to the capabilities of so-called multi-cycle models. These models make 

multiple calls to external memory, often adapting the retrieval loop in response to shifting 

epistemic demands. There has also been research into the ways that LLMs can control the 

retrieval process via the adaptive selection (or generation) of retrieval cues. In essence, 

recent research has sought to equip LLMs with something akin to a metacognitive 

capacity, one that enables LLMs to decide when the retrieval loop should be called and 

(crucially) what retrieval cues should be used for the retrieval process (Asai et al., 2024; 

Zhou et al., 2024). 

A nice example of recent work in this area is provided by Jiang et al. (2023). They 

describe a technique called Forward-Looking Active REtrieval augmented generation 

(FLARE), which ties the invocation of the retrieval loop to the estimated quality of model 

responses (or generations). FLARE relies on an initial prediction of what the model would 

produce in the absence of the retrieval loop (i.e., in the absence of external memory). The 

quality of this response is then evaluated using token probabilities as a proxy for what the 

model knows courtesy of its internal memory. When token probabilities fall below a 

certain threshold value, the model issues a call to external memory, using its initial 

prediction as a retrieval cue. It then revises the initial prediction, conditioning its response 

on the retrieved information. This process continues throughout the generative process, 

with the evaluation/retrieval cycle being repeated after every sentential generation. 

A key feature of FLARE thus relates to the contingent invocation of the retrieval 

loop. In effect, the LLM decides when to initiate the call to external memory based on an 

ongoing assessment of its capacity to produce a high-quality response to the user’s query. 
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This echoes the broadly metacognitive nature of the decision-making process that underlies 

the choice between internal and external strategies in biological cases of cognitive 

extension (Clark, 2015, 2024a). Clark (2024a), for example, draws on predictive 

processing accounts of brain function to propose a mechanism by which bio-external 

resources might be incorporated into extended cognitive routines. Here, the ‘choice’ 

between internal (non-extended) and external (extended) strategies occurs as part of an 

overarching imperative to bring about a preferred outcome. Suppose, for example, that 

your goal is to write an academic paper on the extended mind. At some point, you find 

yourself needing to refer to the details of the Otto/Inga case. You think that MoMA might 

be located on 53rd Street, but you aren’t sure. Given that your goal (your preferred 

outcome) is to write a high-quality paper, you will be motivated to minimize this 

uncertainty. The upshot is that your generative (i.e., writing) activity is temporarily 

suspended in favour of an epistemic action that retrieves information from an external 

source. In this case, your choice between inner and outer strategies—the decision to rely on 

bio-memory or some bio-external resource—is informed by an ongoing assessment of 

what you already ‘know’ courtesy of internal bio-memory. It is then the resultant level of 

uncertainty (coupled with your goal of writing a high-quality paper) that motivates the call 

to external memory. A similar sort of dynamic can be found in the case of FLARE. Once 

again, there is a choice between inner and outer strategies (i.e., between internal and 

external memory), and the decision to rely on external memory is informed by an ongoing 

assessment of the quality of responses delivered by internal memory.  

The effort to give LLMs greater control over the retrieval process is important, for 

us to see the LLM as an active agent that exhibits control over the timing and operation of 

extended circuits. This brings RAG models into closer alignment with many of the cases 

that have been discussed in the active externalist literature. Indeed, as far as we can tell, all 

cases of cognitive extension feature an individual agent that triggers the instantiation of an 

extended circuit courtesy of their own actions. In the Otto/Inga case, for example, it is the 

biological individual known as Otto who triggers the retrieval loop. Likewise, in the case 

of the bluefin tuna, it is the biological individual (the fish) that exploits (and sometimes 

deliberately creates) the external pools of kinetic energy that help to propel it through its 

watery world. Thus, even in the non-cognitive cases (the cases where an extended routine 

does not qualify as cognitive in nature), we can nevertheless discern an intelligent entity at 
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the heart of every extended circuit. Quite plausibly, the presence of this intelligent entity—

or “cognitive core” (Clark, 2008, pp. 107–108)—is relevant to the way we credit 

individuals with the possession of extended dispositional properties, for the ascription of 

extended dispositional properties is likely tied to the presence of a more basic capacity to 

create and exploit extended circuits. It is precisely in this sense, we suggest, that the recent 

work to equip LLMs with greater control over the retrieval process. It is important not just 

because such capabilities promise to improve the overall quality and efficiency of LLM 

responses; it is also that by bringing the retrieval loop under the control of the LLM, we are 

perhaps more inclined to credit the LLM with dispositional properties that (upon closer 

inspection) turn out to rely on a wider web of material resources (see Smart et al., 2025, for 

a more detailed discussion of this issue). 

Wideware 

The distinctive feature of RAG models is the presence of a retrieval system that 

targets the information stored in an externally-situated datastore, typically a vector 

database. But datastores are not the only type of resource that can be accessed by LLMs. 

Nor is information retrieval the only point of engaging with such resources. In addition to 

specialized repositories of domain-specific knowledge, many LLMs are embedded in an 

online ecology that is replete with informational artefacts, computational services, and 

increasingly, other AI systems. From an active externalist perspective, these resources are 

the potential building blocks of extended cognitive and computational circuits. They are, to 

borrow a term from Clark (1999), the “wideware” of extended LLMs. 

One form of wideware has become a standard feature of production LLMs such as 

ChatGPT and Gemini. This relates to the use of a search engine. Search engines are a 

familiar feature of the online ecology, one that we humans use on a regular basis. But a 

search engine can also be used by LLMs to access information that may not have been 

contained in the training data. This is important, because LLMs are trained on data that is 

typically out of date by the time the model is released to the public. Consider, for example, 

the GPT-4 Turbo model, which (at the time of writing) is the model that powers ChatGPT. 

This model was trained on a dataset containing information up to 1st December 2023, 

meaning that information about more recent events (e.g., those occurring in 2024) cannot 

form part of the model’s internal memory. In principle, then, a question such as “Who won 
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the 2024 U.S. presidential election?” should be out of reach of ChatGPT. Rather than being 

presented with the correct answer, we might expect the model to respond by saying that it 

doesn’t know. 

This is not what happens, of course. In response to the aforementioned question, 

ChatGPT reports the correct result: “Donald Trump.” When pressed as to how it arrived at 

this answer, the model responds by saying “I used my web browsing tool, which allows me 

to search the live internet for up-to-date information.” In this case, then, ChatGPT is 

working in the manner of a RAG model. Indeed, in some ways, online search emerges as 

just another form of RAG. The main difference is that the online environment is now being 

treated as a form of ‘external memory’, and the retrieval effort is being delegated to a 

search engine as opposed to the query engine of a conventional database. 

In addition to search engines, other online tools have been the focus of recent 

research attention (see Mialon et al., 2023, for a recent review). Schick et al. (2023), for 

example, describe an LLM, called Toolformer, that learns how to interact with tools by 

generating content respecting the target tool’s Application Programming Interface (API). 

An interesting feature of Toolformer is its capacity to interact with multiple tools. These 

include a question-answering system (based on a RAG model), a calculator, a calendar, a 

Wikipedia search tool, and a machine translation system. Note that two of these tools (the 

question-answering system and the machine translation system) qualify as AI systems, and 

one of them (the question-answering system) also qualifies as an LLM. This highlights the 

potential for complex forms of extension in which one AI system is assimilated into the 

cognitive/computational routines of another. There ought to be nothing particularly 

problematic about this idea. The proponents of active externalism already accept the 

possibility of AI systems being incorporated in human cognitive routines (Wheeler, 2019), 

so there ought to be no issue with the mere idea of AI systems being assimilated into an 

extended circuit. All that the notion of extended LLMs requires is that we allow such 

systems (perhaps the very same systems) to qualify as the constituents of extended circuits 

that are centred on a different sort of intelligent entity, namely, an LLM. 

Another interesting feature of Toolformer relates to issues of tool selection. In the 

previous section, we saw how researchers are seeking to equip LLMs with something akin 

to a metacognitive capacity, enabling them to coordinate calls to extended memory with 
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ongoing epistemic demands. In such cases, the focus was on a single ‘tool’ (i.e., the 

interaction with external memory), and the primary challenge was to determine when the 

retrieval loop should be invoked. The interaction with multiple tools poses additional 

challenges, requiring the LLM to decide between different tools based on the demands of 

the current task. If, for example, the LLM is presented with a mathematical problem, then 

there is little point in invoking a tool specialized for machine translation. Conversely, if the 

LLM is presented with a translation task, it will do little good to invoke the services of a 

calculator. The success of the LLM is thus tied to its ability to select the right tool for the 

job. In addition, the LLM needs to invoke the tool in a manner that meets the demands of 

the task and the constraints imposed by the tool’s programmatic interface (i.e., its API). In 

the case of Toolformer, for example, the model is required to “decide which APIs to call, 

when to call them, what arguments to pass, and how to best incorporate the results into 

future token prediction” (Schick et al., 2023, p. 68539). All this arguably requires a degree 

of intelligence, echoing one of the points raised in the previous section (recall the 

discussion of the ‘cognitive core’). 

In recent years, there has been a burgeoning of research interest into tool 

integration. Indeed, issues of tool selection and tool integration are very much at the 

forefront of contemporary research into LLMs. The reason for this interest is no doubt 

obvious. While LLMs are good at some things, they are bad at others. LLMs tend to excel 

at language-related tasks, but they often fall short when it comes to tasks that require 

mathematical precision or domain-specific reasoning. While much has been made of these 

shortcomings in at least some parts of the philosophical literature (see Floridi & Chiriatti, 

2020), it is far from clear that we can understand the capabilities of LLMs independently of 

their wider environment. There is, of course, no denying the limitations of the typical 

transformer network. But why judge the capabilities of an LLM independently of its 

capacity to interact with a wider suite of computational tools? After all, according to the 

proponents of active externalism, much of our human cognitive success is tied to our 

ability to factor bio-external resources deep into our cognitive processing routines, and it is 

courtesy of such forms of incorporation that we humans are able to surpass the limits of 

our basic bio-neural endowments (Clark, 1999, 2003). If this should be the case for human 

intelligence, then why assume that the limitations of the typical transformer network are 

particularly definitive of its cognitive horizons, especially once it is embedded in an 
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artefactually-rich online environment? From an active externalist perspective, what matters 

is not so much the capacity of a neural network (a biological brain or transformer 

architecture) to perform a variety of cognitive tasks in the absence of a supportive 

technological and symbolic matrix, it is more the capacity of the network to exploit 

external resources in a way that obviates the appeal to an internally-grounded deficit. Much 

of the recent research into LLMs resonates with this idea. By enabling LLMs to exploit the 

resources of the online environment, we open the door to complex forms of cognitive and 

computational extension that may be no less empowering for LLMs than they are for 

ourselves. And just as with our own species-specific form of intelligence, it may be 

difficult to know where (in space and time) the cognitive story ends. Just as it can be hard 

to determine the limits of our own species-specific form of cognitive success (see Clark, 

2024b), so it may be hard to determine the limits of the somewhat alien form of 

intelligence exhibited by LLMs. 

The Gift 

Our aim, thus far, has been to convince the reader that some LLMs ought to be 

understood along active externalist lines—as extended systems or extended LLMs. In one 

sense, however, there is nothing particularly remarkable about extended LLMs. Given the 

status of LLMs as AI systems, it follows that extended LLMs are an example of what has 

been dubbed extended AI (see Smart, 2018). There is, however, no reason to think that 

extended LLMs exhaust the possibilities for extended AI. Quite possibly, other forms of AI 

(e.g., a humanoid robot) could meet the criteria for cognitive/computational extension, and 

extended LLMs are just one example of a much broader class of systems. This raises a 

question about the significance of LLMs: Beyond their status as AI systems, what, if 

anything, makes extended LLMs deserving of particular philosophical and cognitive 

scientific attention? 

The answer, we suggest, stems from the language-oriented nature of LLMs—the 

peculiar facility that LLMs have with linguistic and quasi-linguistic structures. While there 

is no reason to regard language as essential for the formation of extended systems, it is 

nevertheless a feature of many of the cases that have been discussed in the active 

externalist literature. To see this, we need only remind ourselves of the centrality of 

language to the classic extended mind case. Otto’s interactions with the notebook serve as 
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the basis for claims regarding the extended mind. But such forms of cognitive extension 

are contingent on Otto’s ability to read the notebook’s contents. Absent this (language-

related) ability and the appeal to cognitive extension evaporates. Language is thus a central 

feature of the classic extended mind case. Indeed, it is Otto’s facility with language that 

makes this case possible. Otto’s linguaform abilities need not, by themselves, qualify as 

extended, but they nevertheless provide the foundation for Otto’s extended mind. 

Given the nature of the earlier parallels with the Otto case, it should be relatively 

clear that the forms of extension emerging in respect of RAG models are similarly 

dependent on a facility with language. RAG models, recall, feature a retrieval loop that 

returns textual content from an externally-situated database. As with Otto, the external 

database is only a candidate feature of an extended architecture if the LLM can factor the 

retrieved information into its generative routines. Absent this ability to, in effect, ‘read’ the 

information and there is no basis for the claim that the contents of external memory ought 

to be understood as on a par with the contents of internal memory. It would, for example, 

make no sense to insist that an LLM ‘knows’ whatever facts are contained in the external 

database if such facts are incapable of influencing the LLM’s responses in the manner we 

typically expect of an epistemic state (e.g., the state of knowing the location of MoMA). 

The same is true when we turn our attention to online search. As with RAG, it is 

the LLM’s facility with language that enables it to benefit from online search—to factor 

search results into its own generative performances. In contrast to RAG, however, online 

search opens the door to a much more expansive body of information. This is important, 

for the online realm is home to a significant portion of our symbolic culture, including 

much of the knowledge distilled from centuries of intellectual activity. Such knowledge 

may or may not have been used to train an LLM, but once an LLM has been equipped with 

a capacity to interact with a search engine, it nevertheless possesses an ability to access this 

knowledge. In fact, from an active externalist perspective, the externally-situated 

knowledge already counts as ‘part’ of the knowledge base of the LLM, for the ascription of 

extended dispositional properties encourages us to disregard the differences between 

internal and external memory—to, in effect, regard these as a common pool of knowledge 

and information that drives the LLM’s generative performances. 
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The LLM’s facility with language is, of course, tied to the details of its training 

regime. But note how the capacity to interact with search engines alters the way we think 

about the training process. Rather than regard training as an attempt to deliver a fully-

formed system with a fixed suite of epistemic capabilities, the training process is perhaps 

better understood as an attempt to prepare the LLM for its deployment in an online 

environment. Once an LLM has the capacity to interact with this environment, it can begin 

to assimilate external resources into its generative performances, yielding capabilities that 

we might not have expected to emerge given the nature of the training regime. This can 

quickly lead to confusion. Consider that as part of a recent presentation, one of the authors 

was asked to comment on the ethics of using online data to train LLMs. In particular, the 

question concerned the use of online data without the explicit approval or consent of the 

individual (or organization) who originally produced the data. This question is clearly 

important, but it tends to assume that the successes (and sometimes failures) of the LLM 

are predicated solely on the training data—that any information excluded from the training 

dataset could not play a productive role in informing the LLM’s responses. By now, 

however, it should be clear that there is something wrong with this image. The mere fact 

that one has managed to prevent an online resource from being included in the training 

data for an LLM does not mean that the online resource could not be accessed and 

exploited by the LLM as part of its runtime operation. Indeed, from an extended 

perspective, the exclusion of the resource may turn out to be irrelevant, for once an LLM is 

able to access the resource via (e.g.) a search engine, the absence of the resource from the 

original dataset may have little bearing on the LLM’s responses. In essence, the LLM may 

respond as if the resource had featured as part of its training regime all along.5 

None of this is to detract from the importance of the training data or the ethical 

issues surrounding the use of such data. The point is more that an extended perspective 

changes the way we think about the training process, encouraging us to regard it as 

something more akin to learning to read. This step is, of course, crucial, but it is no more 

 
5 This may explain some of the confusion surrounding the use of content from major news organizations, 

such as the British Broadcasting Corporation (BBC). There is a difference, here, between the use of content 

to tailor an LLM’s responses (e.g., via a search tool) and the use of content to train an LLM. If information 

has been available online for public consumption, then it is, in principle, poised to influence the 

performances of an LLM. The mere fact that an LLM tailors its responses with regard to such content does 

not mean that such content has been incorporated into internal memory. In such cases, the LLM is accessing 

online information just as a human would access such information to keep themselves abreast of current 

affairs (see https://www.bbc.co.uk/news/articles/cy7ndgylzzmo).  

https://www.bbc.co.uk/news/articles/cy7ndgylzzmo
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definitive of an LLM’s cognitive and epistemic horizons than it is our own. It is more a 

stepping stone to something else—a way of building something with the potential to 

exploit the vast edifice of knowledge and information that our species has accumulated as 

the result of innovations such as the Internet, the growth of portable computing 

technologies, and the rise of social media. 

A facility with language is also important when it comes to invoking tools. 

Consider, for example, the Toolformer system, which we discussed in the previous section. 

The aim here is not just to invoke an online tool, it is to ensure the tool is invoked in the 

right way. This means the LLM must generate content that respects the target tool’s API. 

Typically, this involves the generation of programmatic instructions, although, in some 

cases, natural language may also be appropriate. (This is especially so if the target tool is, 

itself, a language-enabled entity, such as another LLM.) The basic point here is that a 

facility with language (of either the natural or artificial [programmatic] variety) is essential 

to the formation of extended LLMs, for it is only by generating linguaform content (in the 

form of prompts, queries, programmatic instructions, and so on) that an LLM is able to 

solicit support from a wider web of material resources. And therein lies the peculiar value 

and significance of language. For all the resources of the online realm were created by us 

or intended for us, and it is only because of our facility with language that we are able to 

derive any sort of cognitive or epistemic benefit from these resources. This is why 

language is important. Unlike the Heptapod language, our own (human) language does not 

“open time,” but it does open the door to cognitively-empowering forms of extension, ones 

that are, perhaps, no less significant than those that drive our own species-specific 

cognitive performances. 

Conclusion 

Much of the philosophical debate surrounding the extended mind has been limited 

to the realm of human (or at least biological) intelligence. The primary point of contention 

in such debates is whether human mental states and cognitive processes are (at all times) 

realized by mechanisms that are solely confined to the intra-cranial (or, at least, intra-

bodily) realm. According to the proponents of active externalism, even quite familiar 

cognitive and mental phenomena (e.g., the state of believing that MoMA is on 53rd Street) 

can, on occasion, be subject to extra-neural realization. In such cases, the mechanisms 
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responsible for human mental states and cognitive processes reach beyond the biological 

borders of skin and skull, incorporating resources from the wider (extra-organismic) 

environment. 

In the present chapter, we sought to apply this idea to LLMs, suggesting that some 

LLMs exist as extended LLMs. According to this view, an extended LLM is an LLM 

whose performances are, on occasion, subject to wide or extended realization. Just as 

human cognitive capacities are, at times, realised by information processing loops that 

extend beyond the borders of the biological brain, so the capacities of LLMs are, at times, 

realised by information processing loops that extend beyond the borders of the transformer 

network.  

In our view, many contemporary LLMs exist as extended LLMs. But why be 

interested in extended LLMs? The answer is that extended LLMs reveal a host of issues 

that transcend the traditional divide between philosophy and engineering. From an 

engineering perspective, the aim is to build evermore capable LLMs, ones that move us in 

the direction of human levels of intelligence. But active externalists insist that much of 

human intelligence is a form of extended intelligence—that many of the hallmark features 

of human intelligence (e.g., our capacity for advanced thought and reason) are tied to the 

operation of extended mechanisms. This establishes an important point of contact between 

the philosophical effort to understand the nature of human intelligence and the 

technological effort to build the next generation of intelligent machines. If the distinctive 

feature of human intelligence is its extended status, then the project of building machines 

with human-level intelligence is, in effect, the project of building machines that are able to 

factor external resources deep into their cognitive routines. This merits a closer 

examination of human cognitive performances, focusing not just on what is inside the head 

but also what the head is inside of. 

An extended perspective is also important when it comes to the evaluation of 

LLMs. Rather than focus on the capabilities of LLMs independently of the wider 

environment, it may be important to consider the ways in which the ecological embedding 

of LLMs contributes to various forms of situated success. Recall the case of the bluefin 

tuna. We cannot understand the tuna’s capabilities by removing it from its aqueous 

medium. Nor is the explanatory effort best served by limiting our attention to what 
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happens on one or other side of the tuna’s biological boundary. It is only by 

acknowledging the complex interactions that occur between the brain, the body, and the 

world that we are able to explain (and thus understand) the origin of the tuna’s natatorial 

success. We can, of course, study the capabilities of LLMs independently of their wider 

environment, but we should not expect these capabilities to be the same as those arising 

from the operation of extended mechanisms. This looks to be important when it comes to 

understanding both the benefits and (crucially) the risks associated with LLMs, especially 

when it comes to the deployment of LLMs in informationally-rich and technologically-

saturated ‘smart’ environments. 

On the philosophical front, extended LLMs are important because they expand the 

scope of active externalism, opening up new lines of philosophical inquiry, and revealing 

new directions for research into the extended mind (see Smart et al., 2025). Of particular 

importance is the way that LLMs direct our attention to the role of language in the 

formation of extended circuits. Courtesy of their facility with language, LLMs are able to 

invoke computational services, configure the operation of computational tools, and exploit 

online information. The virtue of language, on this view, is that it provides the basis for the 

formation of extended systems, enabling LLMs to factor external resources deep into their 

cognitive and computational routines. This is the nature of the gift we give to the new 

arrivals. It is a gift befitting those whose help we may one day come to rely on. The gift is 

our language. And what better gift for an intelligent entity whose artificial habitat is an 

online ocean of words? 
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